Wrappers
- class rl_zoo3.wrappers.ActionNoiseWrapper(env, noise_std=0.1)[source]
Add gaussian noise to the action (without telling the agent), to test the robustness of the control.
- Parameters:
env (Env)
noise_std (float) – Standard deviation of the noise
- class rl_zoo3.wrappers.ActionSmoothingWrapper(env, smoothing_coef=0.0)[source]
Smooth the action using exponential moving average.
- Parameters:
env (Env)
smoothing_coef (float) – Smoothing coefficient (0 no smoothing, 1 very smooth)
- class rl_zoo3.wrappers.DelayedRewardWrapper(env, delay=10)[source]
Delay the reward by delay steps, it makes the task harder but more realistic. The reward is accumulated during those steps.
- Parameters:
env (Env)
delay (int) – Number of steps the reward should be delayed.
- class rl_zoo3.wrappers.FrameSkip(env, skip=4)[source]
Return only every
skip
-th frame (frameskipping)- Parameters:
env (Env) – the environment
skip (int) – number of
skip
-th frame
- class rl_zoo3.wrappers.HistoryWrapper(env, horizon=2)[source]
Stack past observations and actions to give an history to the agent.
- Parameters:
env (Env)
horizon (int) – Number of steps to keep in the history.
- class rl_zoo3.wrappers.HistoryWrapperObsDict(env, horizon=2)[source]
History Wrapper for dict observation.
- Parameters:
env (Env)
horizon (int) – Number of steps to keep in the history.
- class rl_zoo3.wrappers.MaskVelocityWrapper(env)[source]
Gym environment observation wrapper used to mask velocity terms in observations. The intention is the make the MDP partially observable. Adapted from https://github.com/LiuWenlin595/FinalProject.
- Parameters:
env (Env) – Gym environment
- class rl_zoo3.wrappers.TruncatedOnSuccessWrapper(env, reward_offset=0.0, n_successes=1)[source]
Reset on success and offsets the reward. Useful for GoalEnv.
- Parameters:
env (Env)
reward_offset (float)
n_successes (int)